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Abstract.

Glacier tables are structures frequently encountered on temperate glaciers. They consist of a rock supported by a narrow

ice foot which forms through differential melting of the ice. In this article, we investigate their formation by following their

dynamics on the Mer de glace glacier (Alps, France). We report field measurements of four specific glacier tables over the

course of several days, as well as snapshot measurements of a field of 80 tables performed on one given day. We develop a5

simple analytical 1-D heat conduction model accounting for the various mechanisms of the heat transfer on the glacier using

local meteoreorological data, and which displays excellent agreement with the field measurements. We show that the formation

of glacier tables results from a competition between two effects: on the one hand, a geometrical amplification of the heat flux

received by the rock and transmitted to the ice underneath on the one hand, and on the other hand, a shielding effect resulting

from the warmer temperature of the rocks compared to that of the ice (reducing the sensible and net infrared incident fluxes).10

The latter is greatly amplified by direct solar irradiation, which induces a strong temperature gradient across the thickness of

the rock.

1 Introduction

A wide variety of spectacular shapes and patterns formed through differential ablation can be found in Nature: surface patterns

known as rillenkarren result from the dissolution of soluble rocks (Cohen et al., 2016; Claudin et al., 2017; Cohen et al., 2020;15

Guérin et al., 2020), mushroom rocks undergo erosion of their base by strong particle-laden winds (Mashaal et al., 2020), and

hoodoos which consist of a hard stone protecting a narrow column of sedimentary rock from rain-induced erosion (Young and

Young, 1992; Bruthans et al., 2014; Turkington and Paradise, 2005).

On ice and snow surfaces, similar structures can be found: slender snow blades known as penitentes are caused by sub-

limation (Mangold, 2011; Bergeron et al., 2006; Claudin et al., 2015), suncusps consists of bowl-shaped depressions at the20

surface of a snow patch (Rhodes et al., 1987; Betterton, 2001; Mitchell and Tiedje, 2010), scallops which are regularly spaced

patterns of surface indentations at the ice-water or ice-air interface (Bushuk et al., 2019), Zen stones found on frozen lakes

are pebbles resting on a delicate ice pedestal protected from sun-induced sublimation (Taberlet and Plihon, 2021) and glacier

tables (see fig. 1c) for which a foot of ice resists melting due mostly to thermal insulation provided by a large rock (Agassiz,

1840; Bouillette, 1933, 1934; Smiraglia and Diolaiuti, 2011; Hénot et al., 2021).25
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Figure 1. (a, b, c) Formation of a natural granite glacier table (rock 1, see Table 1).

On a temperate glacier, the ice ablation rate is influenced by the presence of debris on its surface. Indeed, a dense debris

layer covering an ice surface can, when thin enough (less than 0.5 cm), enhance the ice melting compared to a bare ice surface

or, if thick enough, act as an insulation layer and reduce the melting rate (Östrem, 1959). The insulation effect is well-captured

by complex energy balance models which use meteorological data as input parameters (Reid and Brock, 2010; Collier et al.,

2014), and more recently using enhanced temperature index models (Carenzo et al., 2016; Moeller et al., 2016). The melt30

amplification effect for thin debris layers was explained by its patchiness (Reid and Brock, 2010) or by its porosity to air

flow (Evatt et al., 2015). At a more local scale, patches of dirt or ashes on a glacier are known to lead to the formation of

ice structures known as dirt cones, which consists of an ice cone covered with a centimetric layer of dirt (Swithinbank, 1950;

Krenek, 1958; Drewry, 1972; Betterton, 2001).

Glacier tables (see fig. 1c) are structures frequently encountered on the leveled part of temperate glaciers (Agassiz, 1840).35

They typically consist of a meter-size rock supported by a column (or foot) of ice. They form over the course of a few days to

a few weeks at the end of the spring, from May to June and may progressively disappear during the summer. Very large tables

however, whose size can reach 10 m, can last for several years (Bouillette, 1933, 1934). Glacier tables form because the ablation

rate of the ice is lower under the rock than at the air-ice interface. When the ice foot becomes too thin, the table falls, usually

on its south side. The ice foot progressively disappears and the rock can potentially form another table, if not too late in the40

season. Similarly to what is know for debris layers, smaller rocks tend not to form tables but can instead increase the melting

rate and gradually sink into the ice, creating narrow and deep a hole which can reach up to 15 cm in depth (McIntyre, 1984). In

a previous work (Hénot et al., 2021), artificial glacier tables were reproduced experimentally in a lab controlled environment

(constant temperature, humidity, absence of wind), at a centimetric scale. The study focused on the initial behavior of pattern

formation using cylindrical "rocks" of various sizes, aspect ratio and materials, initially resting on a flat ice surface. Although45

this small scale study under controlled conditions allowed one to understand the physical mechanisms that could play a role

glacier table formation, it did not encompass the complexity of the energy balance on a natural glacier, in particular the effects

of the direct solar irradiation and of the wind.

In this article, we report field observations made on the Mer de glace glacier (French Alps), of the formation dynamics of

glacier tables monitored over the course of a few days, as well as a systematic measurement of already-formed tables on a given50

day. The Mer de Glace is a temperate glacier, meaning that the ice temperature is always given by the melting temperature of

water, Tice = 273 K. We use local meteorological data to fit the ice ablation rate and characterize the heat transfer mechanisms
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Figure 2. (a) Map of the Mer de Glace glacier in the French Alps (Google Earth Image © 2021 Maxar Technologies) locating the measure-

ment site of June 3rd 2021 (1), the timelapse observation sites of June 2021 (2) and June 2019 (3) and the Requin AWS (4). (b) 3D schematics

of a typical glacier table defining the height H(t) of the ice foot and the average thickness e and widths d1 and d2 of the rock. (c) Picture of

a portion of the glacier taken in June 2021 showing natural glacier tables, from which the data shown in fig. 3 were obtained.

at the surface of the glacier. We then develop a 1D conduction model taking into account the effect of the solar irradiation as

well as sensible and longwave heat fluxes, which is in excellent agreement with the field measurements and which illustrates

the synergistic effect between solar irradiation and sensible flux responsible for glacier table formation.55

2 Field measurements

2.1 Location and definitions

In this article, we report two sets of observations made on the Mer de glace glacier: a time-resolved camera recording of the

formation and evolution of four glacier tables and a field observation of 80 glacier tables.

The lower part of the Mer de Glace (below a 2000 m altitude) is largely covered with granitic debris, with sizes ranging from60

submillimetric up to several meters. In the following, their dimensions are characterized by their thickness e and their larger

and smaller widths d1 and d2 (see fig. 2b). We define an effective width of the rock deff = 2d1d2/(d1 + d2) whose expression

will be justified in part 3.2 and the aspect ratio β = e/deff . The vertical distance from the bottom of a rock to the surface of the

ice far from it is noted H . This quantity is either positive if the rock forms a table, in which case it corresponds to the height of

the ice foot, or negative if the rock sinks into the ice surface, in which case it correspond to the depth of the hole. The thermal65

conductivity of granite was measured in a previous work (Hénot et al., 2021) as λ= 2.8 W·m−1·K−1, which is in agreement

with the literature (Cho et al., 2009).
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2.2 Time evolution of four large tables

Time-lapse images were obtained using an autonomous solar powered camera (Enlaps Tikee) placed on three 1.5 m-long wood

rods set into the ice. Pictures (4608 px × 3456 px) were taken every 30 min between 5 am and 10 pm during 5 to 7 days70

until the camera fell on the ice due to the melting around the supporting rods. The movements of the device were corrected by

tracking two fixed points on the background of the images. The positions of the top of the rocks were then manually pointed

on each image. The formation of glacier tables created by four granite rocks of various shapes and dimensions was recorded

in two time periods: A (7-14 June 2019) and B (4-9 June 2021) as summarized in table 1. Rocks 1, 2 and 4 were moved on

clean flat ice, in front of the camera, the day before the recording started in order to provide a controlled initial state in which75

the rocks are lying on a horizontal ice surface (H = 0, see fig. 1a). Rock 3 was already standing on an ice foot, approximately

1 m high, at the beginning of period B (see suppl mat.). The evolution of the vertical position of these rocks is plotted in fig. 4a

and e. The position of the ice surface was followed using a scaling rod, embedded into the ice and located approximately 2 m

away from the rocks.

The surface temperature of rock 4 was measured every 5 min during period B using thermocouples and a homemade battery80

powered device (Arduino MKR ZERO and EVAL-CN0391-ARDZ Shield). The wind speed ua, air temperature Tair and solar

radiative flux Φ were measured at the Requin automatic weather station (AWS) (Nadeau et al., 2009) (located at 45◦88’N,

06◦93’E, see marker 4 on fig. 2a), 600 m higher and 3 km away from the measurement site. On a 2-week time period in

July 2021, we also measured the air temperature at location 2, 3 m above the glacier surface (see suppl. mat.) which was

systematically 2.5◦C higher than the AWS data. In the rest of the article, we use the AWS data to which an offset was added:85

Tair = Tair AWS + 2.5◦C. We do not expect the measured solar flux and the wind speed to be significantly affected by the

distance from the measurement site. The meteorological data are displayed in fig. 4b-d and f-h.

2.3 An 800-m2 field comprising 80 glacier tables

On June 3rd 2021, we systematically measured, in an area of 10 m×80 m located at point 1 in fig. 2a, the dimensions of granite

rocks (thickness and widths) as well as either the height of the ice foot supporting them (H > 0) or the depth of penetration90

in the ice (H < 0). The data of H is plotted in fig. 3 as a function of the thickness e and the widths d1 and d2 of the rocks.

A detailed analysis and a modeling of these observations is provided below, but a first observation shows that there exists

a critical size above which rocks tend to form glacier tables. The larger the rock, the greater its ability to protect the ice

underneath from melting and, assuming all tables started their formation at the same time, the higher the ice foot. Below this

critical size, however, the rocks have a tendency to sink into the ice surface. The transition between this two regimes seems95

sharper when considering the width of the rocks (deff,crit ≈ 0.2− 0.3 m), instead of their thickness (eeff,crit ≈ 0.02− 0.1 m).

This is reminiscent of the results obtained in a controlled environment in the absence of solar radiation, for which the transition

occurred for a critical diameter dcrit,Φ̃=0 = 4λ/(ηheff) of the cylinders, independently of their aspect ratio (Hénot et al., 2021).
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Table 1. Characteristics of the rocks studied.

Rock
Loc.

Period of
e (m) d1/d2 (m) β

index observation

1
3

A: 0.25 1.21 / 0.98 0.23

2 7-14 Jun. 19 0.12 0.41 / 0.35 0.32

3
2

B: 1.7 3.5 / 3.5 0.49

4 4-9 Jun. 21 0.095 0.32/0.31 0.30

de

H

H>0

H<0

e
a. b.

Figure 3. Raw data of the observation made at location 1 (see fig. 2a) on June 3rd 2021 : height of the ice foot (H > 0) or of the penetration

depth of the rock in the ice (H < 0) as a function of the rock thickness e (a) and widths d1 and d2 (b).

3 Analysis and discussion

3.1 Ice melting100

The lowering of the ice surface of the glacier, due to melting, is shown with blue markers in fig. 4a and e. The daily ablation rate

on clear-sky days was of the order of 8 cm·day−1 on period A (3/8 clear-sky days) and 5.5 cm·day−1 on period B (5/5 clear-sky

days). In the following, we characterize the heat flux balance on the glacier surface by linking the ablated ice thickness to local

meteorological data. The net incident heat flux causing the glacier surface to melt can, in general, be expressed as:

Qice =QSW +QLW +QH +QL +QR (1)105

where QSW and QLW are the net shortwave and longwave radiative fluxes, QH and QL are the turbulent heat fluxes corre-

sponding respectively to sensible and latent heat and QR is the flux associated with rain. In the following, we make sim-

plification assumptions in order to extract the main physical mechanisms of the heat transfer on the glacier. The shortwave

radiation (when neglecting the diffuse radiation) is given by QSW = Φ(1−αice), where αice is the ice albedo and Φ is the

incoming direct solar radiative flux. The net longwave flux comes from a balance between the radiation emitted by the ice,110

at temperature Tice, and received from the atmosphere, at temperature Tair, (both emissivities are taken equal to 1) leading to
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Figure 4. (a, e) Vertical position of the ice surface (blue markers), and of rocks 1 to 4 (colored markers, see table 1). The black dashed line

corresponds to the model for ice ablation given by eq. 2. The colored solid lines correspond to the model for rock given by eq. 7. These

models use as input meteorological data measured at the Requin AWS: wind speed ua (b, f), air temperature Tair (c, g) and solar radiation Φ

(d, h).

QLW = Fσ(T 4
air−T 4

ice), where σ is the Stefan-Boltzmann constant and F = 0.7 is a cloud factor whose value corresponds to

clear sky conditions (Hock, 2005). As it will prove useful in the glacier table formation model, we linearize this expression

around Tice: QLW ≈ 4FσT 3
ice(Tair−Tice) since Tair−Tice� Tice (with temperatures in kelvins). The turbulent sensible flux

is assumed to be proportional to the wind velocity: QH = Cua(Tair−Tice) where C is a constant depending on the surface115

rugosity (Brock et al., 2006; van der Veen, 2013). We neglect turbulent latent heat flux as it usually corresponds to less than

10 % of the total flux (Hock, 2005). There were no precipitation and thus no associated heat flux on the glacier during the

duration of our study. From this, the net total incident heat flux at the ice surface is:

Qice = Φ(1−αice) +heff(Tair−Tice) (2)

where heff = 4FσT 3
ice + Cua is an effective heat exchange coefficient accounting for sensible and longwave radiative fluxes.120

The incoming heat flux directly causes the ice to melt, and the vertical position of the ice surface is thus given by:

zice(t)− zice(0) =−Lfus

t∫

0

Qice(t)dt (3)

where Lfus = 303 MJ·m−3 is the volumetric enthalpy of fusion for ice. This model has two adjustable parameters: C and αice.
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The black dashed lines in fig. 4a and e correspond to the application of eq. 2 and 3 using the values of the wind speed, air

temperature and solar flux measured at the Requin AWS and displayed in fig. 4b-d and f-h, with parameters αice = 0.33 and125

C = 2.3 J·K−1·m−3 adjusted on the data of period A (see suppl. mat. for a discussion on the sensibility).

The agreement between our prediction and the field measurements is excellent, which validates the assumptions made. Note

that the integration is reset every day from the last experimental value of the previous day in order to avoid the integration of a

small error over several day. Moreover, the value of the adjusted ice albedo corresponds to what is reported in the literature for

aged surface glacier ice (Brock et al., 2000; van der Veen, 2013). The value of the turbulent convection coefficient C also falls130

in the range (1.9 to 4.9 J·K−1·m−3) previously reported (Nakawo and Young, 1981; Oerlemans and Klok, 2002). The effective

heat exchange coefficient shows important variations between the two time periods going from heff, A = 18.2±8.4 W·K−1·m−2

(mean± SD) to heff, B = 5.6±1.9 W·K−1·m−2. This is due to the drastic difference in mean wind speed, going from 6.5 m·s−1

in period A to 1.0 m·s−1 in period B, which in turn explains the variation in daily ablation rate between the two periods.

3.2 Table formation135

Rocks 1 and 2 formed glacier tables over the course of approximately a week (see fig. 4a and e), after which they felt on their

side. Rock 4 was initially sitting on an ice foot, which grew bigger, while rock 3, although exhibiting dimensions close to those

of rock 2 went down almost at the same rate than the bare ice surface and did not form any significant glacier table (see suppl.

mat. for pictures).

In (Hénot et al., 2021), an analytical model was developed in order to explain the formation of artificial glacier tables made140

of cylindrical cap in a controlled environment, in which the heat transfer (natural convection of air and infrared radiation

from the enclosure) was modelled through an effective heat exchange coefficient. In the following, we adapt this model to

the non-symmetrical geometry of the rocks and we include the effect of solar irradiation and wind. Assuming that rocks are

cuboids (see fig. 2b), the initial area of contact with the ice is Abase = d1d2 while the external area in contact with air is

Aext = d1d2 + 2(d1 + d2)e. For the sake of simplicity this area will be considered constant, although it evidently varies over145

time. Yet, as discussed in Suppl. Mat., this has little effect on the heat transfer between the rock and the ice beneath.

The mean effective area on which the solar irradiation is received by a rock is denoted as 〈Asun〉. This area should depend

on the shape and orientation of the rock with respect to the course of the sun, but for sake of simplicity in the following it is

simply assumed to be equal to the rock base surface area 〈Asun〉= d1d2 (the validity of this assumption is discussed in the

suppl. mat.). In a quasi-static regime, the energy balance of a rock can be written as:150

AbaseQrock→ice =Aextheff(Tair−Trock) + 〈Asun〉(1−αrock)Φ (4)

where αrock = 0.18 is the albedo of the granite rock (measured by (Watson, 1971), see suppl. mat.) and Trock is the rock

surface temperature, assumed homogeneous. Note that the heat flux received from the air and transmitted to the ice is amplified

by a geometrical factor: Aext/Abase = 1 + 2ed1+d2
d1d2

= 1 + 4e/deff = 1 + 4β. The heat flux transmitted from the rock to the ice

underneath can be estimated using a 1D conduction model as: Qrock→ice = λ (Trock−Tice)
d1D

where λ is the thermal conductivity155

of the rock and d1D is a length scale for the conduction process in the rock. It was postulated, and verified experimentally (see
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Figure 5. Temperature Trock of the top surface of rock 4 measured using a thermocouple (solid line) and computed using eq. 6 and the

meteorological data of fig. 4f-h (dashed line).

fig. 5 of Hénot et al. (2021)), that this length could be estimated by:

d1D = η
Vrock

Aext
= η

e

1 + 4β
(5)

where Vrock is the volume of the rock and η = 2.5 is a numerical prefactor adjusted from the lab experiments. From this and

eq. 4, the temperature of the rock surface is:160

Trock = Tice +
1

1 + λ
heffηe

[
Tair−Tice +

(1−αrock)Φ
(1 + 4β)heff

]
(6)

and the heat flux transmitted to the ice can be expressed as:

Qrock→ice =
(1 + 4β)heff(Tair−Tice) + (1−αrock)Φ

1 + η heffe
λ

(7)

The integration of the flux given in eq. 7 is shown in solid lines in fig. 4a and e. The agreement between the measurements and

the model prediction is over all very good for all four rocks, which validates the simple assumptions of the model. In our model165

under the quasi-static approximation, the heat flux received by the rock is assumed to be instantaneously transmitted to the ice

underneath. Fig. 5 shows the measured temperature of the top surface of rock 4 (solid line) as well as the value predicted by

eq. 6 using the meteorological data for Tair, ua and Φ.

As this seems to be well verified in the case of rock 4 whose temporal changes in surface temperature are well captured by the

model, this is justified only if the rocks are not too thick compared to the thermal skin depth δdiff =
√
TdayDrock/π = 0.2 m170

whereDrock = 1.4×10−6 m2·s−1 is the thermal diffusivity of the rock and Tday = 24 h is the period of variation of the external

heat flux (i.e. Φ(t)). This condition is indeed well verified for rock 4, and acceptable for rocks 1 and 2 but not in the case of the

1.7 m thick rock 3 whose daily evolution of surface temperature can therefore not be captured by eq. 6. However, due to the

linearity of the heat exchange process with respect to the temperature, the daily average energy balance is expected to remain

valid, which explains the good agreement between the data and the model for rock 3 in fig. 4e.175

Fig. 6a shows for each rock, the height of the ice foot, H(t) = zrock(t)− zice(t), as a function of the ablated ice thickness,

Hice(t) = zice(t)− zice(0). On average these quantities appear to be proportional to each other. From the model developed

previously, the daily average of the ratio H/Hice can be expressed as: 〈H/Hice〉= 1−〈Qrock→ice/Qice〉. Using eq. 2 and 7
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heff 

Period        A      B

(USI) 18.2  5.6

a.

b.

Hice
H

Figure 6. (a) Evolution of the height H of the ice foot under rocks 1-4 as a function of the ice ablated thickness Hice. The colored lines

correspond to linear adjustments of the data. The black solid line has a slope 1. (b) Mean ratio of the height H of the ice foot under a rock

and of the total ablated ice thicknessHice since the beginning of the table formation, as a function of the thickness e of the rock. The markers

correspond to the slopes of fig. a for each rocks. The lines correspond to the model (eq. 8) for a typical mean solar flux (〈Φ〉= 340 W·m−2),

using the 〈heff〉 values measured in period A (dashed lines) and B (solid lines) and the aspect ratio β of each rock given in table 1.

and using the average value for Tair :180

〈
H

Hice

〉
= 1− 1 + 4β+ (1−αrock)〈Φ̃〉

1 + η 〈heff〉
λ e

1
1 + (1−αice)〈Φ̃〉

(8)

where 〈Φ̃〉= 〈Φ〉/(heff(Tair−Tice)) is a dimensionless number characterizing the effect of solar radiation. Note that this

expression does not depend on the hourly meteorological data but rather on averaged values over the time period of interest.

On both periods A and B, Tair ≈ 7◦C and 〈Φ〉 ≈ 340 W·m−1 on clear-sky days.

Equation 8 predicts the linear behaviour ofH vs.Hice and allows one to compute their ratio, which evidently depends on the185

tickness of the rock, e, which is plotted in fig. 6b for periods A (dashed lines) and B (solid lines) for each rock aspect ratio β.

Here also the agreement between the field measurements and the model is excellent and illustrates the sensibility of the table

formation dynamics to the effective heat exchange coefficient and thus to the mean wind speed.

3.3 Analysis of the 80 glacier tables field

Having successfully modelled the time evolution of the 4 larger glacier tables, the model can be applied to the data obtained190

on a given day for a field comprising 80 rocks.
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Figure 7. (a) Observation versus model for the distance H between the bottom of rocks and the ice surface for the data measured on June

3rd 2021 (see fig. 3). The solid black line has a slope 1 and the dotted lines correspond to the ablated ice thickness Hice since the melting of

the snow layer (see suppl. mat.). (b) Diagram of the ability for a rock to form a table as a function of its typical width deff and the effective

heat exchange coefficient heff given by eq. 9. The dotted line corresponds to the delimitation predicted by the model in the absence of solar

irradiation (〈Φ̃〉= 0). The solid colored lines correspond to the case of typically measured solar radiation and different rock aspect ratio. The

small circles correspond to the data of (a) and are represented in red if a table is observed (H > 0) and in blue otherwise. The larger circles

correspond to rocks 1-4. (c) Distribution of the aspect ratio β of the rocks close to the transition between the two regimes (|H|< 0.2 m). The

vertical dashed lines correspond to the limits plotted in fig. b.

The snow layer covering that part of the glacier finished melting on May 26, leaving the ice exposed. The meteorological

data of the time period C (from May 26 until June 3), alongside with the previously adjusted parameters αice and C allows

to compute the thickness of ablated ice Hice = 0.45± 0.05 m during this period (see fig. S5 of the suppl. mat.). The mean

air temperature during time period C was Tair ≈ 6◦C. The mean wind speed was 〈ua〉= 1.1 m·s−1 leading to an effective195

heat exchange coefficient of heff, C = 5.7± 2.4 W·K−1·m−2. Not taking into account the effect of direct solar irradiation,

this coefficient would lead to a critical diameter dcrit,Φ̃=0 = 4λ/(ηheff) = 2 m, far larger than what is observed on fig. 3. The

observed values of H are plotted on fig. 7a as a function of the ones computed for each rock using eq. 8 which takes into

account the effect of the sun. It shows an excellent agreement with no new adjustable parameters, between the observed and

predicted values for 0<H < 0.35 m, meaning that these rocks started to form glacier tables at the beginning of period C.200

The rocks standing on taller ice feet probably started to form glacier tables before May 26. They correspond to bigger rocks

that may have emerge from the snow layer early on. As for the rocks that sunk into the ice surface (H < 0, in blue markers),

the expression of eq. 8 is not expected to remain valid after the onset of the formation as the geometrical amplification effect

disappears if the rock is set into the ice. We can therefore conclude that using the previously determined values of αice and C

allows on to satisfyingly predict the height of glaciers tables above the critical diameter.205
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That critical diameter corresponding to the transition between the two regimes (the rock sink into the ice or form a table), is

set by 〈H/Hice〉= 1, and can be expressed as:

dcrit =
λ

ηβ〈heff〉
4β+ (αice−αrock)〈Φ̃〉

1 + (1−αice)〈Φ̃〉
(9)

Fig. 7b shows a diagram of the ability for a rock to form a table as a function of its effective width deff (which in practice

can be replaced by the mean width) and the effective heat exchange coefficient heff for various values of the rock aspect ratio.210

The four monitored rocks as well as the field data from the 80 rocks found in the 800-m2 field are plotted in this diagram. The

distribution of aspect ratio β of rocks (46 of them) close to the transition (defined by |H|< 0.2 m) is plotted in fig.7c. The

bounding values (β = 0.16 and 0.66) as well as the value corresponding to the maximum of the distribution (β = 0.27) are

used to plot in fig. 7b the results of the model given by eq. 9, which shows an excellent agreement with the transition visible

in the field data. This diagram illustrates the sensibility of the table formation to the effective heat exchange coefficient: the215

critical size above which a rock can form a table differs by a factor 2 between the two periods A (windy) and B (no wind).

The dotted line corresponds to the model prediction in the absence of solar radiation and shows that the sun has the effect of

lowering the critical size despite the lower albedo of the rocks compared to the ice.

3.4 Physical discussion

The ability for a rock to form a table appears to be controlled by two opposing effects. On the one hand, the heat flux received220

by the rock from the environment on all its surface (sensible heat flux and longwave radiation) and transmitted to the ice is

amplified by a geometrical factor related to the aspect ratio of the rock. This effect dominates for small rocks and can cause

them to sink into the ice surface. The lower albedo of the rock compared to the ice also lead to an amplification of the direct

solar radiation. On the other hand, there is an attenuation effect of a portion of the heat flux received by the ice under the rock

compared to the one received far away from it. The heat flux that depends on the surface temperature of the body receiving it225

(sensible heat flux related to thermal convection and net longwave radiative flux) are smaller for rocks than for ice as they are

warmer. This effect is controlled by a dimensionless parameter: heffe/λ. The higher this number, the stronger the attenuation

effect, which is thus dominant for large rocks. This effect was already identified and discussed in (Hénot et al., 2021). In natural

conditions, this effect amplified by the solar irradiation which imposes a thermal flux going from the rock top surface to the ice

and induces a temperature gradient inside the rock. This rises the surface temperature of the rock which amplifies the cooling230

effect due to the wind and the infrared emission. Overall, the effect or solar irradiation lowers by a factor 2 to 4 the critical size

for which a rock is able to form a glacier table.

4 Conclusions

We studied the formation of four glacier tables over the course of a week and we measured the characteristics of 80 glacier

tables on the Mer de Glace glacier (Alps). We found out that the size of the rocks is a determinant factor governing table235

formation: the bigger the rock, the higher and faster the ice foot supporting it will grow. Under a critical size, rocks show
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the opposite behaviour of sinking into the ice surface. We developed an analytical conduction model taking into account the

infrared and solar radiation and sensible heat flux received by a rock and by the glacier ice surface using local meteorological

data.
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